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Abstract

Automatic differentiation tools (ADIFOR) is incorporated into a finite element based structural

analysis program for shape and non-shape design sensitivity analysis of structural systems. The

entire analysis and sensitivity procedures are parallelized and vectorized for high-performance

computation. Small-scale examples to verify, the accuracy of the proposed program and a

medium-scale example to demonstrate the parallel-vector performance on the multiple Cray-C90

processors are included in the paper.

I. Introduction

Using the familiar finite element procedure Iu, the static equilibrium equations for a structural

model can be expressed as

[ K( b) ],,,,, {z},,x 1 : {F}n, _ (1)

where [K (b)], {z} and {F} are referred to the stiffness matrix, nodal displacement vector and

nodal force vector, respectively. In Eq. (1), "n" represents the active degree-of-freedom of the
discretized structural model.

The stiffness matrix [K (b)], in general, is a function of design variable vector {b} (where b

Rk). As an example, {b} may represent the cross-sectional areas of various truss members, or

thickness of plate members (for non-shape type of design variables), or it may also represent the

joint coordinates of various nodes of a structure (for shape type of design variables).

A typical constraint, involving a limit on a displacement or a stress component, may be written

as

g(z, b) _< 0 (2)

For the sake of simplified notation, it is assumed that g depends on only a simple design variable

b (i.e. b e W=_). Using the chain rule of differentiation, one obtains

dg _ c_g + xr dz (3)
db c3b db
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wherex is a vector with components
0g

xi - (4)
Oz.

The first term on the right-hand-side of Eq. (3) is usually zero or easy to obtain, thus one

discusses only the computation of the second term.

Differentiating Eq. (1) with respect to b, one obtains

dz 0 F dK
K, - • z (5)

db Ob db

Premultiplying Eq. (5) by xr K", one obtains

xr dbdZ- xrK-'( OFOb dK*Z)db (6)

Numerically, the computation of xr dz can be performed in two different ways. The first, called
dO

the "direct method", consists of solving Eq. (5) for dz and then taking the scalar product with
db

x. The second approach, called the "adjoint method ''(2' a], defines an adjoint vector _ which is the

solution of the system

K ), : x (7)

Or

)_ = K -_ x (8)

)

/(

or

)r= xrK-t (since matrix K is symmetric) (9)

and thus, Eq. (3) can be re-written as

dg_ Og+ _T(O.__F_ dK, z)db Ob Ob db
(10)

The solution of Eq. (7) for )v is similar to a solution for displacement under a "dummy" load

vector {x }.

Once, the sensitivity information dg has been computed, any gradient based optimization
ab

softwares(4, 51can be used to obtain a new, improved design.

dz as shown in Eq. (5), andThe focus of this paper is in the parallel computation of d_

particularly, the computation of the term d! .
ab

Since in the finite element procedure
# elements

I K] = _ [k(_)] (11)
e=I

Therefore, computation of d{K1 involves with computation of
db

obtained either by

(i) Finite Difference Method

d[k "1 and the latter can be
db
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or

(ii) Analytical Method

In the finite difference method, a small perturbation of a design variable is first applied, then

approximate derivative (which can be affected by round-off and truncation errors TM) can be

generated. The analytical method tends to generate very cumbersome expressions for the

derivatives. Thus, the objectives of this paper is to use automatic differentiation (ADIFOR)

tools _61to compute the derivatives of d[_'l in a parallel-vector computer environment.
ab

A brief review of ADI]ZOR tools I61 is given in Section 2. Parallel generation and assembly i7j

of the stiffness matrix [K] is presented in Section 3. Parallel-Vector equation solver E81which will

be used to solve system of Eq. (5) is summarized in Section 4. Numerical examples are presented
m Section 5, and conclusions are drawn in Section 6.

II. A Brief Review on Automatic Differentiation I61

Automatic Differentiation (AD) is essentially an automatic implementation of the chain rule

of differentiation based on tracking the connection between the dependent (or output) and

independent (or input) variables.

Typically, to calculate the derivative of any output variable in a computer program with

respect to any input variable, one modifies the original program by inserting of specialized

instruction which identify the relevant output and input variables.

Automatic differentiation produces exact derivatives, limited only by machine precision. There

are two modes of AD. In the forward mode, the chain rule is evaluated from the input to the

output. In this mode, the computational cost increases with the number of input variables. In the

reverse mode, the chain rule is evaluated from the output to the input.

In order to understand the forward mode in AD, let's refer to Figure 1 where the computation

flow to evaluate

- 20 b. - 20 Oz
.V 3 = =

/2bl b2 - v-2- b_) b, (2b_ + ,/--2 bl)

is shown in a form of the directed graph.

The derivatives of dye_ and '_Y2 are also shown in a form of the directed graph in Figure 2.
db. db,

In Figure 2, the connecting link between any 2 vertex represents the chain-rule derivatives.

As an example, 0a _2b I and ad = 1.
6b 2 Oa

On the other hand, if the reverse mode of differentiation is used to calculate dy3 then the

chain-rule of differentiation will start with the output variable Y3, and then proceed as following:
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dy 3 20 &

dd /2b I b, + V'T b_)2

dy3 dY3 0 d 20 b___ I

dY3 dY3 0 a 0 Y3
- +

dx_ da O& O&

20& _, 1 * 2b 1 -20

(2b, bz + _ b() 2 (2b t b,_+ v'T b_)

It has been concluded from earlier research works [6"9, lol that using automatic differentiation (AD)

method, such as ADIFOR tool t61, will be more computationally efficient than the finite difference

method. In most problems, however, analytical method is more efficient than ADIFOR tool (but

at the expense of assuming there is no human errors in deriving analytical derivative expressions).

The comparisons of computational costs and the accuracy to evaluate derivative information

between the Finite Difference, Analytical and ADIFOR have been discussed I6"9. _01. This paper,

therefore, will focus on the issue of incorporating derivative calculation subroutines (generated

by ADIFOR) in a parallel-vector high-performance computer environment.

III. Parallel Generation and Assembly on Distributed- and Shared Memory Computers I7]

The choice of the storage scheme for the global stiffness matrix in any finite element analysis

code is based on whether it will save the memory or it will enhance the vector speed, or both.

The row-oriented storage scheme c81is good for saxpy operation and shared memory type

computers, while the skyline storage is good for dot product (daxpy) operation. Moreover, the

skyline storage scheme requires less memory and this feature is important for computers with

distributed-memory (since each processor usually has less memory capacity as compared to

shared-memory computers). Fortunately, the Intel iPSC/860 computers have good vector

performance for daxpy operation. In order to use the vector-unrolling technique to improve the

vector performance, a block-skyline columns storage and block rows storage schemes for the

stiffness matrix is used on the Intel and Cray type computers, respectively (as shown in Figure

3). To simplify the discussion, assuming the global matrix is full and three processors are used

to store different portions of the global stiffness matrix.

The size of the block is called k if there are k columns (or k-rows) in each block. It is realized

that the choice of k will have the effects on

l. the in-core memory requirement,

2. the vector performance.

3. the communication performance.

For the Intel iPSC/860 parallel computers, the block size in MPFEA is set to be 8. Since each

processor only has certain block-columns (or block rows) of the global stiffness matrix, the

generation and assembly of this matrix can be done in parallel without any communications

among processors. The work involved in the generation and assembly procedure can be

summarized as (for each processor i, where i = 1, 2 ..... NP):
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Task 1. To identify (but not to searchfor!) theelementsthatcontributeto thecolumns(or rows)
which belongto processori.

Task 2. To generatetheseelementsstiffnessmatrices.
Task 3. To assemblethe global stiffnessmatrix with theseelementstiffnessmatrices.

It shouldbenoted herethat evenfor the caseof nonlinearstructural analysis,Task 1of the
above procedureneedsto be doneonly once,while Task 2 and Task 3 have to be pertbrmed
repeatedlysincethe global matrix will beupdatedin eachnonlineariteration.

4:.,
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IV. Parallel-Vector Choleski Method Development m

In the sequential Choleski method, a symmetric, positive-definite

decomposed as

[K] : [u]r[u]

stiffness matrix, [K], can be

(12)

with the coefficients of the upper-triangular matrix, [U]:

uo. = O for i > j (13)

, K_] for j>__ 1
//11 : _/ Kll ; Ulj -

Hi t

(14)

/:_ 2
llii : <7 - U_. for i > 1

(15)

/-1

(16)
u O.: _ for i,j> 1

uii

For example, %7 can be computed from Eq. (18) as:

k57 - H15 /"/17 - //2_5 //2.7 - //35 /137 - /-/45 //47

u57 = (17)
uss

The calculations in Eq. (17) for the term us7 (of row 5) only involve columns 5 and 7.

Furthermore, the "final value" of us7 cannot be computed until the final, updated values of the

first four rows have been completed. Assuming that only the first two rows of the factored

matrix, [U], have been completed, one still can compute the second partially-updated value of

usv as designated by superscript (2):

t, 2)
7 = k"57- /'/15 //I7- /'/2-5 //2_7 (18)

If row 3 has also been completely updated, then the third partially-updated value of u_7 can be
calculated as:

us_ ): a's_ )- _ U,y_ (19)

This observation suggests an efficient way to perform Choleski factorization in parallel on NP
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processors. For example, each row of the coefficient stiffness matrix, [K], is assigned to a

separate processor.

From Eq. (17), assuming NP = 4, it is seen that row 5 cannot be completely updated until row

4 has been completely updated. In general, in order to update the i_ row, the previous (i-1)rows

must already have been updated. For the above reasons, any NP consecutive rows of the

coefficient stiffness matrix, [K], will be processed by NP separate processors. As a consequence,

while row 5 is being processed by a particular processor, say processor 1, then the first (5-NP)

rows have already been completely updated. Thus, if the i_ row is being processed by the pth

processor, there is no need to check every row (from row 1 to row i-l) to make sure they have

been completed. It is sate to assume that the first (i-NP) rows have already been completed as

shown in the triangular cross-hatched region of Figure 4.

Synchronization checks are required only for the rows between (i-NP + 1) and (i-I) as shown

in the rectangular solid region of Figure 4. Since the first (i-NP) rows have already been

completely factored, the ith row can be "partially" processed by the pa processor as shown in Eq.

(18, 19).

V. Numerical Applications

Different finite element types (such as 2-D Truss, and Plate/Shell elements) and different type

of design variables (such as cross-sectional areas, joint coordinates of truss elements and

thickness of plate elements) are considered in this section. The first two examples are small-size

for the purpose of verifying the accuracy of derivatives (d [k (_) ] / d b) generated by ADIFOR I61

as compared to the ones obtained by finite difference technique. The last example is medium-size

for the purpose of evaluating the parallel-vector performance of the entire finite element and

Design Sensitivity Analysis (DSA) process.

Example 1: Plate-Structure With (Non-Shape) Thickness Design Variable

In this example, 32 plate elements _1 are used, a point force is applied at the center of the fixed

plate (see Figure 5). Thickness of a plate is selected as (non-shape) design variable in this case.

The original thickness is 0.03 and a perturbation of 0.5% is used in the finite (central) difference
scheme.

The derivatives of element stiffness matrix (in global reference and using ADIFOR) with

respect to the thickness t for typical members such as members 5, 12, and 19 ar presented in

Table 1. These derivatives are in good agreement with the ones obtained by finite (central)

difference scheme.

Example 2: Truss-Structure With (Shape) Joint Coordinate Design Variables

In this example, a 1 bay x 1 story truss structure is shown in Figure 6. This small-scale

structure has 4 joints and 5 members. All joint x-coordinates of this structure are selected as

(shape) design variables. A horizontal force F is applied at node 1. The dimensions for each base

and height of this structure are 12" and 9", respectively. Young modulus and cross-sectional area

are 29000 Ksi and 4 in", respectively. A perturbation of 1% is used in the finite (central)

difference scheme. The derivatives of element stiffness matrix (in global reference and using

ADIFOR) with respect to a typical x-coordinate of joint 2 for members 1 and 5 are presented in

Table 2. Again, these derivates are in good agreements with the ones obtained by finite (central)
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differencescheme.

Example 3: A 2-D Truss Structure With 80 Bays and 190 Stories

In this example, a 80 bay x 190 story truss structure is also shown in Figure 6, A horizontal

force F is applied at node 100, All other datas are the same as in Example 2. There are 96 cross-

sectional areas selected as (non-shape) design variables in this example. This structure has 60,990

elements. The resulted structural stiffness matrix has 30,780 degree-of'freedom. Using the

variable bandwidth storage scheme t81will require a real 1-dimensional array with 5;171,574 words

to store the stiffness matrix in the core memory, The average bandwidth for this stiffness matrix

is 168 .....

The performance of the entire finite element analysis and design sensitivity analysis (Using

ADIFOR tool) on 1, 8, and 16 Cray-C90 processors are shown in Table 3. The total speed,up

for the ENTIRE PROCESS are 7.32 and 12.93 when 8and 16 Cray-C90 processors are used,

respectively. : ....

VI. Conclusions

Based upon the numerical results presented in this paper, the following conclusions can be
made:

1. Automatic Differentiation r_[6](ADIFOr,) tool has been successfully applied to both simple

(TRUSS) and complex PLATE/SHELL tttl finite elements.

2. Both non-shape and shape design variables can be successfully treated.
i!

3. For the first time (to the authors' knowledge), ADIFOR tool can be applied in a parallel-

vector computer environment for non-shape and shape sensitivity analysis.

4. The entire finite element and sensitivity analysis can be done with excellent parallel and

vector speed (using all 16 Cray-C90 processors).
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Figure 3. Block-skyline columns storage and block rows storage schemes
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Figure 6: 2-D Truss Structure
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0 [k (5_]
0 t i5576.925 , - 4780.2198 , O, O, O, 15934.066 ......... ]

Ot [15934.068, 5576.923, O, O, O, -5576.923 ......... ]

a [k <19)]

Ot [21510.99, 5576.925, O, O, O, 8.268E-12 ......... ]

Table 1: ADIFOR Derivatives of Plate Element Stiffness Matrix with Respect to Thickness
(Non-shape) Design Variable

i .
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Table 2: ADIFOR Derivatives of Truss Element Stiffness Matrix with Respect to x-coordinate

of Joint 2 (Shape) Design Variable.

el. stiff [k] for member I

0.966667E+04 0.000000E+00 -0.966667E+04

0.000000E+00 0.000000E+00 0.000000E+00

-0.966667E+04 0.000000E+00 0.966667E+04

0.000000E+00 0.000000E+00 0.000000E+00

Gradient of stiff [k_2 -

-805.55555555556 0.

0. 0. 0. 0.

805.55555555556 0.

0. 0. 0. 0.

olk(')]
Ox 2

805.55555555556

0.000000E+00

0.000000E+00

0.000000E+00

0,000000E+00

.

-805.55555555556 0.

el stiff [k] for member 5

0.494933E+04 0.371200E+04-0.494933E+04 -0.371200E+04

0.371200E+04 0.278400E+04-0.371200E+04 -0.278400E+04

-0.494933E+04 -0.371200E+04 0.494933E+04 0.371200E+04

-0.371200E+04-0.278400E+04 0.371200E+04 0.278400E+04

Gradient of stiff [k] w.r.t DV 2 : 0 [k (5) ]

Ox 2

32.995555555555

-284.58666666667

-32.995555555555

284.58666666667

-284.58666666667

-445.44000000000

284.58666666667

445.44000000000

-32.995555555555

284.58666666667

32.995555555555

-284.58666666667

284.58666666667

445.44000000000

-284.58666666667

-445.44000000000
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Table 3: Parallel-Vector Performance For DSA of 80 Bays x 190 Stories Truss Structure Using

ADIFOR Tool on Multiple Cray-C90 Processors
i

Number of Cray-C90 Processors Speed-Up Factors

Tasks 1 proc. 8 proc. 16 proc. 8 proc. 16 proc.
ii

.... i

(A) 0.4855 s_ 0.09954 _ 0.07854 _ 4.88 6.18
ll i: I

0.9582 s_ 0.1320 s_ 0.0731 _

(B) (0.9906*) (0.1433") (0.1547") 7.26 13.11

(C) 2.6290 s_ 0.3568 _ 0.2026 s_ 7.37 12.98

(D) 0.1019 s_ 0.1015 _ 0.1018 _ N/A N/A

9 7 s_:(E) _.371 0.3034 s_ 0.1558 s_ 7.82 15.22

(F) 9.6934 _ 1.2128 s_: 0.6047 _ 7.99 16.03

Entire

Process 16.2740 _ 2.2221 s_ 1.259P _ 7.32 12.93

Notes:

(A)

:(B)
(C)
(D)
(E)
(F)

To generate column heights of stiffness matrix

To generate and assemble stiffness matrix
To factorize stiffness matrix

To get static (forward/backward) solution (sequential computation)

To generate the right-hand-side vectors for sensitivity equations

To solve for displacement sensitivity vectors
Wall-Clock-Time
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OBJECTIVES

1 To

complex finite
complex design

obtain accurate derivatives of
elements and/or
variables

2. Design variables can be either
non-shape (such as areas,
thickness) or shape types (such as
joint coordinates)

• The entire solution process should
be parallelized and vectorized to
reduce solution time

i" <i

• Numerical validation
performance evaluation for
proposed procedure.

and
the
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. • _i,̧

nel,ndofpe,nodes,ndofpn,nunrol,nummat,ir_bays,:7,4, 2*2, 8, !000, 0, i0, 300, nstory,ndv___

_design variable, total memory needed= i000, 7881649

_ax. wall clock timef for gen+assem = 0.250323822

[z)/d{b) with respect to DV _ i000

d{z}/d(b} = 0.463915E-02 0.197448E-03 D.463915E-02 0.127947E-03 0.463915E-02

d(z)/d(b} = 0.584470E-04 0.463915E-02-0.110535E-04 0.463915E-02-0,805540E-04

d(z}/d{b} = 0.463915E-02-O.150054E-03 0.463915E-O2-0.219555E-03 0.463915E-02

d{z)/d{b) = -0.289055E-03 0.463915E-O2-O.358556E-03 0.463915E-O2-O.428056E-03

ME, time for generate SD=I, 2.465475E-2

ME, time for generate K =l, 0.:250328442

ME, time for Factori. =l, 0.234,019218

ME, time for Solution =i, 2.2428906000002E-2

ME, time for (dK/db)*X =I, 6.526009938

ME, time for dX/db =I, 21.726178002

** Time in boundc =4.737786E-3

** Time in jointc =3.0296399999999E-4

** Time in apload =4.8300000000001E-5

** Time in elconn =3.33129E-3

** Time in materp =4.7050644E-2

**-- T_me _D colht =0.1528qqoR6

TIME: (nel,neq, ielm,nterms)28.991996244,
12300, 6600, 12300, 18653_

nel,ndofpe,nodes,ndofpn,nunrol,nummat, irea]_3bays, nstory,(n_

4, 2*2, 8, i000, 0, i0, 300, "10_qO_t

_esign variable, total memory needed = i000, 7881649

max. wall clock timef for gen+assem = 0.143736066

d{z)/d(b) with respect to DV # i000

d{z}/d{b) = 0.463915E-02 0.197448E-03 0.463915E-02 0.127947E-03 0.4639i5E-02

d(z}/d{b} = 0.584470E-04 0.463915E-02-0.110535E-04 0.463915E-O2-0.805540E-04

d(z)/d(b) = 0.463915E-02-0.150054E-03 0.463915E-02-O.219555E-03 0.463915E-02

d{z)/d[b) = -0.289055E-03 0.463915E-02-0.358556E-03 0.463915E-02-0.428056E-03

ME, time for generate SD=I 2.466528E-2

ME, time for generate K =i 0.125706372

ME time for Factori. =l 0.141787986

M_ time for Solution =i 2.2426734E-2

ME time for (dK/db)*X =i 3.275844468

ME time for dX/db =i 10.83518028

ME time for genermte SD=2 1.8168000000429E-5

ME time for generate K =2 0.12609603

ME time for Factori. =2 0.141645408

ME time for Solution =2 5.1287999999872E-5

ME time for (dK/db)*X =2 3.28376691

ME time for dX/db =2 10.836083088

** Time in boundc =4.723914E-3

** Time in jointc =3.0290400000002E-4

** Time in apload =4.8348000000004E-5

** Time in elconn =3.331998E-3

** Time in materp =4.7076264E-2

_lht =3.3666912000001E-2 _
OTAL TIMEY(nel,neq, ielm, nterms)i4.514775074, 12300, 6600, 6150, ---z-7 1

.OTAL TIME: (nel,neq, ielm,nterms)14.528120334, 12300, 6600, 6181, 186_
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ij//

i•i:, _i:

L

nstory
el,ndofpe,nodes,ndofpn,nunrol,nummat,i_bays,7, 4, 2"2_ 8, iOOO, 0. I0, 300,

#design variable, total m_mory needed= i000, 7881649

max. wall clock timaf fo_ gen+assem = 0.106087758

d(z)/d(b) with respect to DV _ i000
d{z)/d(b) = 0.463915E-02 0.197448E-03 O.463915E-02 0.127947E-O3 0.463915E-027

) = 0.58447OE-O4 0 463915E-O2-0.110535E-04 0.463915E-02-0.805540E-04

) 0.463915E-02-0 150054E-03 0.463915E-02-O.219555E_O3 0_463915E-02

) -0.289055E-03 0 463915E-02-0,358556E-03 0.463915E-O2-0,428056E-03

d(z)

d(z)

d(z)
ME

ME

ME

/d(b

/d(b

/d(b

time for generate SD=3

time for generate K =3

time for Factori. =3

time for q_nerate SD=I

time for _e_erate SD=2

time for generate K =i

time for generate K =2

time for Factori. =I

time for Factori. =2

time for Solution =i

time for Solution =2

time for (dK/db)*X =i

time for (dK/db)*X =2

time for dX/db =I

time for dX/db =2
time for Solution =3

time for (dK/db)*X =3

time for dX/db =3

Time in boundc

Time in jointc

Time in apload

Time in elconn

Time in materp

ME

ME

ME

ME

ME

ME

ME

ME

ME

ME

ME

"_,

E,

ME,

2.441805E-2

8.4435756E-2

9.3954744000001E-2

2.2068600000003E-4

2.5296000000008E-5

8.4!71846000001E-2

8.452527E-2

9.3851616E-2

9 3939270000001E-2

6 4373999999923E-5

5 441399999917E-5

2 156280738

2 168834262

7 22125122

7 196945016

2.2304856E-2

2.163674568

7.211424354

=4.723506E-3

=3.0207599999998E-4

=4.8342000000007E-5

=3.328746E-3

=4.6941834E-2

** Time in colht =I.0283598E-2 _

TOTAL TIME: (nel,neq, ielm,nterms_.621492162,

TOTAL TIME: (nel,neq, ielm,nterms_9.607627608,

TOTAL TIME: (nel,neq, ielm,nterms_721047816,

12300,

12300,

12300,

66o0, 4100, 18653 ,
6600, 4131, 186532 _

6600, 4131, 186532;
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SESSION 6 Mosaic and the World Wide Web

Chaired by

Clyde R. Gumbert and John W. McManus

6.1 Introduction to the World Wide Web and Mosaic -Jim Youngblood

6.2 Use of World Wide Web and NCSA Mosaic at Langley -Michael Nelson

6.3 How To Use the WWW To Distribute Scientific & Technical Information (STI)
-Donna Roper
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